
Audit Report
Baby doge coin 2.0
November 2023

Network BSC

Address 0x5681152e9AD9628C1518266A9aB29B6d8B35693B

Audited by © cyberscope

Baby doge coin 2.0 Token Audit 1

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

Baby doge coin 2.0 Token Audit 2

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ RID Redundant Interface Declaration Unresolved

⬤ ULTW Transfers Liquidity to Team Wallet Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ RRS Redundant Require Statement Unresolved

⬤ RSML Redundant SafeMath Library Unresolved

⬤ L02 State Variables could be Declared Constant Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L05 Unused State Variable Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L13 Divide before Multiply Operation Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

Baby doge coin 2.0 Token Audit 3

Table of Contents
Analysis 1
Diagnostics 2
Table of Contents 3
Review 5

Audit Updates 5
Source Files 5

Findings Breakdown 6
RID - Redundant Interface Declaration 7

Description 7
Recommendation 7

ULTW - Transfers Liquidity to Team Wallet 8
Description 8
Recommendation 8

MEE - Missing Events Emission 9
Description 9
Recommendation 9

RRS - Redundant Require Statement 10
Description 10
Recommendation 10

RSML - Redundant SafeMath Library 11
Description 11
Recommendation 11

L02 - State Variables could be Declared Constant 12
Description 12
Recommendation 12

L04 - Conformance to Solidity Naming Conventions 13
Description 13
Recommendation 13

L05 - Unused State Variable 15
Description 15
Recommendation 15

L07 - Missing Events Arithmetic 16
Description 16
Recommendation 16

L09 - Dead Code Elimination 18
Description 18
Recommendation 18

L13 - Divide before Multiply Operation 20
Description 20

Baby doge coin 2.0 Token Audit 4

Recommendation 20
L16 - Validate Variable Setters 21

Description 21
Recommendation 21

L19 - Stable Compiler Version 22
Description 22
Recommendation 22

Functions Analysis 23
Inheritance Graph 31
Flow Graph 32
Summary 33
Disclaimer 34
About Cyberscope 35

Baby doge coin 2.0 Token Audit 5

Review

Contract Name BabyDogeCoin20

Compiler Version v0.8.19+commit.7dd6d404

Optimization 200 runs

Explorer https://bscscan.com/address/0x5681152e9ad9628c1518266a9

ab29b6d8b35693b

Address 0x5681152e9ad9628c1518266a9ab29b6d8b35693b

Network BSC

Symbol BabyDoge2

Decimals 18

Total Supply 420,000,000,000,000

Audit Updates

Initial Audit 16 Nov 2023

Source Files

Filename SHA256

BabyDogeCoin20.sol ed700f64c3ec1ba76f3e35473efdd1d39475701fa52bd3259bb566d2119

02d80

https://bscscan.com/address/0x5681152e9ad9628c1518266a9ab29b6d8b35693b
https://bscscan.com/address/0x5681152e9ad9628c1518266a9ab29b6d8b35693b

Baby doge coin 2.0 Token Audit 6

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 13

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 13 0 0 0

Baby doge coin 2.0 Token Audit 7

RID - Redundant Interface Declaration

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1154

Status Unresolved

Description

The contract includes an interface declaration that does not contain any code. While this

does not affect the contract's security or functionality, it can increase complexity and make

it harder to comprehend, which may result in maintenance difficulties and security risks.

interface DividendPayingTokenOptionalInterface {}

Recommendation

To ensure that contracts are efficient and easy to maintain, it's recommended to avoid

creating redundant interface declarations. Developers should only define interfaces for the

functions and events that need to be accessed from other contracts.

Baby doge coin 2.0 Token Audit 8

ULTW - Transfers Liquidity to Team Wallet

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1430

Status Unresolved

Description

The contract marketingWallet has the authority to transfer funds without limit to the

team wallet. These funds have been accumulated from fees collected from the contract.

The owner may take advantage of it by calling the getAllTaxes method.

function getAllTaxes() external {
require(msg.sender == owner() || msg.sender == marketingWallet, "not

valid caller");
swapAndSendToFee(balanceOf(address(this)), marketingWallet);

}

Recommendation

The contract could embody a check for the maximum amount of funds that can be

swapped, since a huge amount may volatile the token's price. The team should carefully

manage the private keys of the owner’s account. We strongly recommend a powerful

security mechanism that will prevent a single user from accessing the contract admin

functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Baby doge coin 2.0 Token Audit 9

MEE - Missing Events Emission

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1301

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function setMarketingWallet(address payable wallet) external onlyOwner
{

marketingWallet = wallet;
}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Baby doge coin 2.0 Token Audit 10

RRS - Redundant Require Statement

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L21

Status Unresolved

Description

The contract utilizes a require statement within the add function aiming to prevent

overflow errors. This function is designed based on the SafeMath library's principles. In

Solidity version 0.8.0 and later, arithmetic operations revert on overflow and underflow,

making the overflow check within the function redundant. This redundancy could lead to

extra gas costs and increased complexity without providing additional security.

function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");

return c;
}

Recommendation

It is recommended to remove the require statement from the add function since the

contract is using a Solidity pragma version equal to or greater than 0.8.0. By doing so, the

contract will leverage the built-in overflow and underflow checks provided by the Solidity

language itself, simplifying the code and reducing gas consumption. This change will

uphold the contract's integrity in handling arithmetic operations while optimizing for

efficiency and cost-effectiveness.

Baby doge coin 2.0 Token Audit 11

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location BabyDogeCoin20.sol

Status Unresolved

Description

SafeMath is a popular Solidity library that provides a set of functions for performing

common arithmetic operations in a way that is resistant to integer overflows and

underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library. Since the version of the contract is

greater than 0.8.0 then the pure Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked {

... } statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breakin

g-changes.

https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/v0.8.16/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

Baby doge coin 2.0 Token Audit 12

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1180

Status Unresolved

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

uint256 public Optimization = 170004246259376824

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address

or the maximum number of times a certain function can be called. The team is advised to

add the constant keyword to state variables that never change.

Baby doge coin 2.0 Token Audit 13

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L705,707,738,780,1180,1444,1445,1446,1463,1464,146
5,1482,1483,1484,1502,1503,1504

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function MINIMUM_LIQUIDITY() external pure returns (uint256);
function WETH() external pure returns (address);
uint256 public Optimization = 170004246259376824
uint256 _wholeNumber
uint256 _firstNumberAfterDecimal
uint256 _secondNumberAfterDecimal

Recommendation

Baby doge coin 2.0 Token Audit 14

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

Baby doge coin 2.0 Token Audit 15

L05 - Unused State Variable

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1082

Status Unresolved

Description

An unused state variable is a state variable that is declared in the contract, but is never

used in any of the contract's functions. This can happen if the state variable was originally

intended to be used, but was later removed or never used.

Unused state variables can create clutter in the contract and make it more difficult to

understand and maintain. They can also increase the size of the contract and the cost of

deploying and interacting with it.

int256 private constant MAX_INT256 = ~(int256(1) << 255)

Recommendation

To avoid creating unused state variables, it's important to carefully consider the state

variables that are needed for the contract's functionality, and to remove any that are no

longer needed. This can help improve the clarity and efficiency of the contract.

Baby doge coin 2.0 Token Audit 16

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1440,1453,1472,1491,1511

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

swapTokensAtAmount = amount

centiSellTax =
_wholeNumber *
100 +
_firstNumberAfterDecimal *
10 +
_secondNumberAfterDecimal

centiBuyTax =
_wholeNumber *
100 +
_firstNumberAfterDecimal *
10 +
_secondNumberAfterDecimal

...

Recommendation

Baby doge coin 2.0 Token Audit 17

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

Baby doge coin 2.0 Token Audit 18

L09 - Dead Code Elimination

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L582,980,988,1128,1133,1144

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero

address");

_beforeTokenTransfer(account, address(0), amount);

_balances[account] = _balances[account].sub(
amount,
"ERC20: burn amount exceeds balance"

);
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);

}

...

Recommendation

Baby doge coin 2.0 Token Audit 19

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

Baby doge coin 2.0 Token Audit 20

L13 - Divide before Multiply Operation

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1254,1258,1491,1511

Status Unresolved

Description

It is important to be aware of the order of operations when performing arithmetic

calculations. This is especially important when working with large numbers, as the order of

operations can affect the final result of the calculation. Performing divisions before

multiplications may cause loss of prediction.

maxTxAmount =
parameters.maxTxPercent *
supply_ *
(10 ** decimals_).div(10000)

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when

performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses

to specify the order of operations. The basic rule is that the multiplications should be prior

to the divisions.

Baby doge coin 2.0 Token Audit 21

L16 - Validate Variable Setters

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L1006,1232,1281,1302

Status Unresolved

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

_owner = msgSender
payable(addr_).transfer(msg.value)
uniswapV2Pair = _uniswapV2Pair
marketingWallet = wallet

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

Baby doge coin 2.0 Token Audit 22

L19 - Stable Compiler Version

Criticality Minor / Informative

Location BabyDogeCoin20.sol#L8

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.15;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

Baby doge coin 2.0 Token Audit 23

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

SafeMath Library

add Internal

sub Internal

sub Internal

mul Internal

div Internal

div Internal

mod Internal

mod Internal

Context Implementation

_msgSender Internal

_msgData Internal

IERC20 Interface

totalSupply External -

balanceOf External -

transfer External ✓ -

Baby doge coin 2.0 Token Audit 24

allowance External -

approve External ✓ -

transferFrom External ✓ -

IERC20Metadat
a

Interface IERC20

name External -

symbol External -

decimals External -

ERC20 Implementation Context,
IERC20,
IERC20Meta
data

Public ✓ -

name Public -

symbol Public -

decimals Public -

totalSupply Public -

balanceOf Public -

transfer Public ✓ -

allowance Public -

approve Public ✓ -

transferFrom Public ✓ -

increaseAllowance Public ✓ -

decreaseAllowance Public ✓ -

Baby doge coin 2.0 Token Audit 25

_transfer Internal ✓

_mint Internal ✓

_burn Internal ✓

_approve Internal ✓

_beforeTokenTransfer Internal ✓

IUniswapV2Fac
tory

Interface

feeTo External -

feeToSetter External -

getPair External -

allPairs External -

allPairsLength External -

createPair External ✓ -

setFeeTo External ✓ -

setFeeToSetter External ✓ -

IUniswapV2Pair Interface

name External -

symbol External -

decimals External -

totalSupply External -

balanceOf External -

allowance External -

Baby doge coin 2.0 Token Audit 26

approve External ✓ -

transfer External ✓ -

transferFrom External ✓ -

DOMAIN_SEPARATOR External -

PERMIT_TYPEHASH External -

nonces External -

permit External ✓ -

MINIMUM_LIQUIDITY External -

factory External -

token0 External -

token1 External -

getReserves External -

price0CumulativeLast External -

price1CumulativeLast External -

kLast External -

mint External ✓ -

burn External ✓ -

swap External ✓ -

skim External ✓ -

sync External ✓ -

initialize External ✓ -

IUniswapV2Rou
ter01

Interface

Baby doge coin 2.0 Token Audit 27

factory External -

WETH External -

addLiquidity External ✓ -

addLiquidityETH External Payable -

removeLiquidity External ✓ -

removeLiquidityETH External ✓ -

removeLiquidityWithPermit External ✓ -

removeLiquidityETHWithPermit External ✓ -

swapExactTokensForTokens External ✓ -

swapTokensForExactTokens External ✓ -

swapExactETHForTokens External Payable -

swapTokensForExactETH External ✓ -

swapExactTokensForETH External ✓ -

swapETHForExactTokens External Payable -

quote External -

getAmountOut External -

getAmountIn External -

getAmountsOut External -

getAmountsIn External -

IUniswapV2Rou
ter02

Interface IUniswapV2
Router01

removeLiquidityETHSupportingFeeOnTr
ansferTokens

External ✓ -

removeLiquidityETHWithPermitSupporti
ngFeeOnTransferTokens

External ✓ -

Baby doge coin 2.0 Token Audit 28

swapExactTokensForTokensSupporting
FeeOnTransferTokens

External ✓ -

swapExactETHForTokensSupportingFee
OnTransferTokens

External Payable -

swapExactTokensForETHSupportingFee
OnTransferTokens

External ✓ -

Ownership Implementation

Public ✓ -

addr Internal

fee Internal

Ownable Implementation Context

Public ✓ -

owner Public -

renounceOwnership Public ✓ onlyOwner

transferOwnership Public ✓ onlyOwner

SafeMathInt Library

mul Internal

div Internal

sub Internal

add Internal

abs Internal

toUint256Safe Internal

Baby doge coin 2.0 Token Audit 29

SafeMathUint Library

toInt256Safe Internal

DividendPaying
TokenOptionalI
nterface

Interface

withdrawableDividendOf External -

withdrawnDividendOf External -

accumulativeDividendOf External -

BabyDogeCoin
20

Implementation ERC20,
Ownable,
Ownership

Public Payable ERC20
Ownership

External Payable -

updateUniswapV2Router Public ✓ onlyOwner

excludeFromFees Public ✓ onlyOwner

excludeMultipleAccountsFromFees Public ✓ onlyOwner

setMarketingWallet External ✓ onlyOwner

setAutomatedMarketMakerPair Public ✓ onlyOwner

_setAutomatedMarketMakerPair Private ✓

isExcludedFromFees Public -

_transfer Internal ✓

swapAndSendToFee Private ✓

swapTokensForEth Private ✓

getAllTaxes External ✓ -

Baby doge coin 2.0 Token Audit 30

setSwapAmount External ✓ onlyOwner

setSellTax Public ✓ onlyOwner

setBuyTax Public ✓ onlyOwner

setMaxTx External ✓ onlyOwner

setMaxWallet External ✓ onlyOwner

Baby doge coin 2.0 Token Audit 31

Inheritance Graph

Baby doge coin 2.0 Token Audit 32

Flow Graph

Baby doge coin 2.0 Token Audit 33

Summary
Baby doge coin 2.0 contract implements a token mechanism. This audit investigates

security issues, business logic concerns, and potential improvements. Baby doge coin 2.0

is an interesting project that has a friendly and growing community. The Smart Contract

analysis reported no compiler errors or critical issues. The Contract Owner can access

some admin functions that can not be used in a malicious way to disturb the users’

transactions. There is also a limit of max 5% fees.

Baby doge coin 2.0 Token Audit 34

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

